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Bifurcation and chaos in the double-well Duffing-van der Pol oscillator: Numerical
and analytical studies

A. Venkatesan and M. Lakshmanan
Department of Physics, Centre for Nonlinear Dynamics, Bharathidasan University, Tiruchirappalli 620 024, India
(Received 3 June 1997

The behavior of a driven double-well Duffing—van der Pol oscillator for a specific parametric choice
(le|=p) is studied. The existence of different attractors in the system paranfietedomain is examined and
a detailed account of various steady states for fixed damping is presented. The transition from quasiperiodic to
periodic motion through chaotic oscillations is reported. The intervening chaotic regime is further shown to
possess islands of phase-locked states and periodic win@oelading period-doubling regionsboundary
crisis, three classes of intermittencies, and transient chaos. We also observe the existence of local-global
bifurcation of intermittent catastrophe type and global bifurcation of blue-sky catastrophe type during the
transition from quasiperiodic to periodic solutions. Using a perturbative periodic solution, an investigation of
the various forms of instabilities allows one to predict Neimark instability in fthe plane and eventually
results in the approximate predictive criteria for the chaotic redi8t063-651X97)05611-0

PACS numbd(s): 05.45+b

I. INTRODUCTION nance region for a specific value of the paramétér=1.0)
and a range ok values(0.8—1.0. Also they have obtained a
The Duffing—van der PalDVP) oscillator perturbative solution for the periodic oscillation and carried
. out a stability analysis of such a solution to predict Neimark
X— u(1=x%)x+ ax+ Bx3=f cosmwt, u>0, (1) bifurcation. However, no such analysis exists for the impor-

tant case of the double-well-type DVP oscillator so far in

where the overdot represents a derivative with respect te¢he literature, which is atypical in the sense that even in the
time, is a ubiquitous nonlinear differential equation thatabsence of forcing it shows the existence of multiple attrac-
makes its presence in physical, engineering, and even biaers[6,7].
logical problemg1-7]. It is a generalization of the classic  Considering the DVP oscillator with a double-well-type
van der Pol oscillator equation. It can be considered in atestoring force in the form
least three physically interesting situations, wherein the po- _
tential V(x)=ax?/2+Bx*2 is a (i) single well X— u(1—x?)x—|a|x+ Bx3=f cowt, >0, (2)
(a>0,8>0), (ii) double well @<0,8>0), or (iii) double . o )
hump (@>0,8<0). Each one of the above three cases ha¥'€ notice that the three eqwhbngm points of the sysi@n
become a classic central model to describe inherently norf®" f=0 correspond to-|a|x+ Bx°=0, so that we have the
linear phenomena, exhibiting a rich and baffling variety ofStable fixed pointsc{®)=+\[a[/8 and the unstable fixed
regular and chaotic motions. point that is hyperbolic axg“)=0. Actually, x, , are elliptic

Chaotic motion in systerfil) with a single-well-type re- points for|a|= B and become stable foci f¢re|> 3, while
storing force was investigated by Ueda and Akam#8jlas  they are unstable foci fdie|< 8. As a result, the systei(®)
a model of negative resistance oscillator and later on wasexhibits a large-orbit motion, which always encircles all the
studied by a number of other authd®-12), who noted three equilibrium points for the caser|=8. As far as
symmetry breaking of attractors and the onset of chaotic dyle|> 8 is concerned, the system exhibits both small-orbit,
namics. Bountiet al. [11] have investigated the nonintegra- that is, oscillation around any one of the stable fixed points,
bility of a family of DVP oscillators by studying analyticity and large-orbit motion, depending upon the values of the
properties of the solution in the complex time plane andother control parameters and also initial conditions.
proved that an infinitely sheeted structure exists in this sys- In this paper we undertake an investigation of the dynam-
tem. Rajasekar, Parthasarthy, and Lakshmd@&hpointed ics of the double-well DVP oscillatof2) and show that it is
out that the DVP oscillator with a double-well potential ex- a rich dynamical system, possessing a vast number of regular
hibits Smale horseshoe chaos when transverse intersectioasd chaotic steady states. In particular, considering the spe-
of the homoclinic orbits occur. Further, Kao and Wdig] cial case|a|=8 (the case|a|+# B is even richer and the
had analog simulated the DVP oscillator with a double-humpesults will be presented separat¢h6]), we bring out the
potential and discussed the various mode-locking, multipleexistence of a transition from quasiperiodic to periodic mo-
hysteresis, period-doubling route to chaos, intermittent hoption in the f-w parameter spacéaa chaotic motionThe dif-
ping, and crises phenomena. ferent features we observe are that in the chaotic sea there

Recently, Szemplinska-Stupnika and Rudowisk?] re- are many isles of periodic and phase-locked states, which
ported that a single-well-type DVP oscillator exhibits cha-exhibit period-doubling phenomena, intermittencies, crises,
otic motion between two types of regular motion, namely,etc., along with regions of transient chaos, corresponding to
periodic and quasiperiodic oscillations, in the prinicipal reso-local bifurcations. In addition, there are also transitions from
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guasiperiodicity to period- orbits corresponding to global dow region of the frequency < (0.503,0.529). In the above
bifurcation of blue-sky and local-global bifurcation of inter- range, we note that the period-2 orbit is bornwat 0.529; it
mittent catastrophes. We also present a perturbative approaghndergoes a period-¢22™)-doubling bifurcation, finally
to the study of bifurcations that occur near the principal resoleading to the onset of chaos asdecreasefsee Fig. 2)].
nance. The analysis allows us to derive the algebraic equa- Higher values of the forcing strengthintroduce the ap-
tions for the instability boundaries. pearance of a new transition. When this increase is coupled
The plan of the paper is as follows. In Sec. Il we presentvith increasing frequency, the quasiperiodic motion sud-
the numerical results for different steady states, bifurcatiorlenly changes into a phase-locked attractor. As an example
routes, and chaos for syste(®). In Sec. Ill we develop a at f=0.19, the transition from a quasiperiodic oscillation to
perturbative solution and obtain expressions for the stabilipPhase locked states of period-3 orbit occureat0.453 and

regions and compare them with numerical results. Then w&iS locked state persists in the frequency range
compare the results with the dynamics of the double-well€ (0-453,0.47), which is then followed by chaos, reverse pe-

Duffing oscillator in Sec. IV. Finally, Sec. V summarizes our riod doubllng, chaos, and p_enodlc solutigsee Fig. _Zd)]._
results. The details of our numerical study are summarized in the

f-o phase diagrams, Fig. 1 and the bifurcation diagrams of
Fig. 2. They depict the system parameter region where qua-
II. NUMERICAL RESULTS siperiodic, large periodic, and chaotic attractors exist. The
) ) . ) ) curves denoted QP), QR2), and R1) are the boundaries of
Equation(2) is numerically integrated using the fourth- the transition from the quasiperiodic to the chaotic state, the
order Runge-Kutta algorithm with adaptive step size withgyasiperiodic to the periodic state, and the chaotic to the
parameter values fixed at[=0.5, 5=0.5, andu=0.1 in  periodic state, respectively. Also, one observes in the entire
order to study the large-orbit behavior mentioned in the Inyransition regions very often the coexistence of multiple at-
troduction. The transitions are also charqcterlzed by tracingractors. Further, beyond the curvélp there are some re-
the time evolutions, phase portrait, Poincan@p, Fourier  gions that exhibit phase-locked periodic and transient chaotic
spectrum, and Lyapunov exponents. For identifying differenktates. However, in this paper, those states are not discussed
steady states, the dynamical transitions are traced out by twg detail.
different scanning procedure@) varying o at a fixedf (fre- Various steady states, denoted as 1,2,3,15 inFig. 1,
quency scanningand (ii) varying f at a fixedw (amplitude  are then illustrated in Fig. 3. Regular attractors are illustrated
scanning. The resulting phase diagram in thes parameter  py their phase portraits and quasiperiodic and chaotic attrac-
is shown in Fig. 1. The diagram covers the transition threshigrs by their Poincarenaps.
olds in the region of principal and Superharmonic resonances The first three po|nt$1)_(3) in F|g 3 are examp]es of
0.4<w<1.0 and the forcing strength lying in the region aimost periodic(quasiperiodit orbits for low values off.
0.0<f<0.2. The various features in the phase diagram arqhen points(4)—(15) are essentially located at the principal
summarized and the dynamical transitions of the attractorénd Superharmonic resonance regions for |arge values of the

are elucidated in the following. forcing parameterf >0.12, at increasing driving frequency
. We observe here the following: a quasiperiodic orbit
A. Phenomena of steady states [point (4)], a period-F orbit [point (5)], chaotic orbits

] ) ) [points (6) and (7)], period-doubled orbit$points (8) and
One observes that EqZ) admits the free-runn_mg solution (9)], chaotic orbitdpoints (10) and (11)], a period-5 orbit
when the external force is abserit0.0). When it is present [point (12)], and periodF orbits [points (13)—(15)].
and for lowf values and loww values, the frequency of the

system becomes incommensurate with the external fre-
guency. Consequently, the system exhibits multifrequency
quasiperiodic oscillations. When the value of the external The complicated dynamical behaviors of the DVP oscil-
frequencyw exceeds a certain critical value for fixdda  lator (2) with |«| =8 due to the presence of the double-well
transition from quasiperiodic to periodic oscillations occursrestoring force has been confirmed by the phase diagram as
on increasings (see Fig. 1 essentially due to supercritical discussed above. From the bifurcation theory point of view,
Neimark bifurcation(see Secs. Il B and Il This phenom- these correspond to several types of bifurcations: secondary
enon continues until a criticdl value (f~0.115). Hopf, intermittent, and blue-sky catastrophes, in addition to
On increasing the forcing parameteffurther, f>0.115,  standard period-doubling bifurcations, which are discussed
the system exhibits chaotic motion between the two regulain the following section.
motions, that is quasiperiodic and periodic oscillations, _ o )
within a range of the driving frequenay. For example, at 1. Local bifurcations in the QI_D(l) region: Secondary Hopf
f=0.13, chaotic motion occurs in the regionw (Neimark) bifurcation
€ (0.546,0.553) see Fig. pa)]. In analogy with the Hopf bifurcation, a bifurcation is ex-
As the forcing parametdrincreases further, within a very pected at a critical value as the limit cycle loses its stability,
narrow frequency region, a chaos—periodic windows—so that an attracting torus is born. This is the secondary Hopf
chaos type of transition is found to occur between the twdbifurcation or a Neimark bifurcatiofil7]. Further, the bifur-
regular oscillations. For example, &=0.14, a period-5  cated solution can be either stable and supercritical or un-
solution occurs in the frequency rangee (0.545,0.551) stable and subcritical. For the present DVP oscilla@r
within the chaotic range € (0.525,0.553) see Fig. 2)]. At with |«|= 3, there is a very large transition region QP
f=0.17, a period-doubling phenomenon occurs in the wincorresponding to this secondary Hopf bifurcation. As an ex-

B. Classification of bifurcations
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FIG. 1. Regions of different steady states exhibited by the double-well DVP osciBtat = 0.1.

ample, let us examine the transient process fiedd.1. Fig- ample, atf =0.15, the chaotic region exists in the range
ure 4 shows the Poincareaps with values ofo decreasing e (0.512,0.551)see Fig. 5. It follows that this narrow strip
and with the starting values of and x indicated in paren- of chaotic motion is related to the transition from a quasi-
theses. In Fig. @), for =0.59, we see a nodelike conver- periodic to a periodic oscillation via chaotic motion. This
gence to a point, while in Fig.(8), for »=0.58, the conver- transition does not occur in a smooth, continuous way, as is
gence has a spiraling character and the rate of convergencetig case when the Neimark bifurcation is a supercritical one,
noticeably slower. In Fig. &), at «=0.57, we see that the but occurs through a chaotic region. This type of transition
system is moving outward from near an unstable fixed poinhas a close resemblance to the Duffing oscill§ic,17,18
towards the attracting invariant closed curve and the apease, where it was shown that a lower-frequency band of the
proach is termed supercritical. This is the typical behaviorchaotic region is related to the saddle-node bifurcation,
for the curve QPL) in Fig. 1 for f<0.10. which causes a sudden change fr@n) the T-periodic orbit
The other nature of Neimark bifurcation, namely subcriti-to (from) the chaotic attractor and transient motions separate
cal behavior, has also been observed in syst®mFor ex- the two different steady states. Thus, by analogy, the occur-
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FIG. 2. (i) Bifurcation diagram for maximum amplitudevs external forcing frequency and (i) Maximal Lypanov exponex ,a, VS
external forcing frequency of system(2). (a) QP—chaos—periodic orbit transitions fere (0.4,0.65 at f =0.13.(b) QP—chaos—periodic
windows—chaos transitions fas  (0.4,0.69 at f =0.14.(c) QP—chaos—period-doubling window—chaos transitionsder(0.4,0.69 at
f=0.17.(d) QP—phase-locked states—chaos—period-doubling windows—chaos transitiong {06r4,0.65 at f=0.19.

rence of chaotic motion in the region of driving frequency 3. Global bifurcations in the QP(2) region: Blue-sky catastrophe
that separates quasiperiodic and periodic oscillations can be ag the frequency value is increasedde= 0.998, a differ-
interpreted as a subcritical Neimark bifurcation. This type ofgnt transition process is captured fb0.05. The typical

bifurcation has been reported earlier in REt2] for the

Poincaremap is shown in Fig. 7 with the values of at

single-well DVP oscillator, but the unstable motion corre-.998 and 1 andi=0.05. From Fig. 7, we find that a periodic
sponds to randomly transitional motion, whereas in theattractor bifurcates to a quasiperiodic attractor that is located
present double-well case this corresponds to a fully chaotigyside the other, and the two attractors are typically disjoint

and separated in phase space by a finite distance. Further-

attractor and periodic windows.

2. Local-global bifurcation in the QP(2) region:

Intermittent catastrophe

Figure 6 shows the typical Poincareaps with forcing
valuesf=0.001 72 and 0.001 73 ab=0.83 in the Q2)

more, it is not generic for a quasiperiodic attractor to appear
suddenly at the same control threshold where periodic mo-

tion vanishes. The quasiperiodic attractor will have existed

previously or it will not exist at all; in either case the bifur-
cation will consist of the periodic attractor simply losing

; . e ST stability: It vanishes into the blue. Such a phenomenon is
region, where a transition from quasiperiodic to periodic mo-,

tion occurs. In order to lock the quasiperiodic motion to the
periodT motion, the Poincarenap points form a closed loop

with points progressing more rapidly near the top of the at-

tractor and more slowly where points are visibly dense. As

4. Transitions to chaotic attractors in th&/-shaped region

termed blue-sky catastroph#7,2Q in the literature and this
event involves collisions with saddle-type objects.

the external force strength is increased, a saddle-node pair We now enumerate the various possible attractors present
develops such that quasiperiodic motion rapidly shrinks tan the system in th&/-shaped region in Fig. 1.

the node, which is near the original attractor. This type of
process is prototypical of an intermittent catastroftie19.

(i) Transient chaos and boundary cris€haotic behavior
is observed between the boundary of curvegXpBnd R1)
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motion (for example, see Fig.)8while near Q) it settles

into a quasiperiodic oscillation. Such a phenomenon is
termed transient chaos, which is a precursor to steady-state
chaos. Between these two transitional regions, periodic win-
dows, phase-locked states, chaotic attractors, and period-
doubling phenomena occur. In addition, the boundary crisis
[21] of the chaotic attractor appears as the value of the ex-
ternal frequency increases so that the dynamics corresponds
to the curve PL), where the boundary of the chaotic attractor
touches the unstable periodic orbit.

In addition, one observes the interesting fact that in the
V-shaped region there exists different parametric values for
which intermittency of all three classic types occurs. This
seems to be rare in such low-dimensional systems.

(i) Type-l intermittency.The parameter regions separat-
ing the periodic windows inside thé-shaped region corre-
spond to various complicated dynamics including chaos. The
precise stability boundary of each window has been found to
correspond to a saddle-node instability. As an example, for
f=0.17, if w is increased across the saddle-node boundary,
type-I intermittency occurg22—25. One such intermittency
signature is shown in Fig. 9. The average laminar length
(1)) of this type of intermittency is found to comply with
the law (1)~ u %, with §~0.52+0.001, whereu=w— w°
and w® is the bifurcation threshold.

(i) Type-Il intermittency.We showed that two possibili-
ties exist in the QR) region when the periodic motion en-
counters a Hopf bifurcation. Either quasiperiodic motion re-

FIG. 3. Various types of steady stateguat 0.1: (1) f=0.001,w sults i.f the bifurcgtion i.s sup.ercr.itical or a complicated
—0.78: (2) £=0.001, ©=0.9; (3) {=0.12, w=0.45: (4) {=0.15, evolution appears if the blfur_catlon is subcritical. In the .Iatter
©=0.45; (5) £=0.19, @=0.47; (6) w=0.515: (7) w=0.52: (8) case the tr_ansmon.to chaos is _found.to have an mter'mltten.cy
©=0.525: (9) w=0.53; (10) f=0.15, w=0.54; (11) f=0.14, signature In certain parametric regions. Such an intermit-
©=0.53; (12) £=0.135, 0w=0.54; (13) f=0.14, w=0.58; (14  tency signature is shown in Fig. 10. A close look into the
f=0.15, w=0.58; (15) f=0.18, w=0.58. signature reveals that there are distinct phases of the regular

motion that are punctuated by other phases that are appar-
in Fig. 1. Near the boundaries of the curved)Pand QRY), ently ch.aoti.c. According to the class_ical P.omea'u—ManneviIIe
the system behaves in a random way, with the trajector;foategor_'zat'or_‘ of different types .of mtgrmﬂtenqes based on
moving in phase space as if it were on a strange attractofocal bifurcations, the present intermittency is of type Il
However, after a transient time, the motion settles into gNCe the preceding Dbifurcation is a Hopf bifurcation

regular attractor, that is, neaf® it settles into a periodic 2229 The average lengt{i) of the laminar phase of ghis
intermittency is found to comply with the la@)~(1/ux)°,

) os with §=0.9321, whereu=w— »® and ® is the bifurcation
(@ L () threshold.
15 o8 ) (iv) Type-lll intermittency.Next we discuss yet another
-1 N Jo8p - g\ type of route in which the periodic orbits in the periodic
-07 Tl el windows are seen to undergo an intermittent transition to
05 o8 " chaos. One such intermittent motion is shown in Fig. 11,
o o8 ] which is a Poincaretime series plot forf=0.14 and
-t 1o -t 0 05 ! »=0.538 02. It is seen that the motion just before the onset
of intermittency is of period-20 orbit, which itself occurred
18 © due to the period doubling of the period-10 orbit. The lami-

! nar phase of Fig. 11 corresponds to the period-40 orbit along

with chaotic bursts. Therefore, this is identified to have
arisen out of a subcritical half subharmonic instability, that
is, subcritical period doubling. Thus, according to the
Pomeau-Manneville classification, this is type-IIl intermit-
T R R T tency[22]. The average lengttl) of the laminar phase of
X this intermittency complies with the following scaling law
FIG. 4. Trajectories near the Neimark bifurcation for syst@n  predicted by Pomeau and Mannevillé:)~ (1/u)°, with
at f=0.1: (3) w=0.59 (1,2); (b) @=0.59 (1,2); and (c) @=0.57 6=0.9912, whereu=w—w® and «° is the bifurcation
1,2. threshold.
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Ill. PERTURBATIVE ANALYSIS

3 a2
X=— Za2+a codwt+ ¢)+ CosAwt + ¢)

From the numerical studies reported in the previous sec-

tions, we observed that the periodicarbit within a range of
driving frequencyw for low values off is close to a har-

a2

M sin A wt+ @), 3

monic function of time. Then, by obtaining a first-order ap-
proximate periodF (=2w/w) solution and analyzing the where
stability, one can estimate the system parameter domain in
which Neimark instability arises, as was done in the case of

a single-well DVP oscillator for fixed andw in Ref.[12].

Keeping this aim in mind, we look for a periodic solution of

Eqg. (2) using a perturbative metho@vith both |a| and 8
fixed at 0.5. Applying the method of multiple scal¢4,26]

to Eqg.(2), one can obtain the approximate solution about the

stable fixed poink,= a/B in the form

15 15 e
(a) P TS
1 1
05 y os|
05} % : 05}
-1 \/\“’/ -1
1. -5
e — 0 1 2 22 0 1 2
X X
15 — ©
; .
05
> 0
-osl .
-1
15 -1 ) 1 2
X

FIG. 6. Poincaranap of the systeni2) before and after mode
locking for (a) f=0.001 72,(b) f=0.001 73, andc) f=0.001 74 at
0=0.83.

f
0% @) -0t (3 pea)?

4

5 nwa’
= 2@ —w? ®
and Q?(a)=1- 3a is the natural frequency of the autono-
mous conservative syste(®) at =0 andf=0.

A. Linear stability analysis
1. Soft-mode instability

In order to examine the stability of the soluti¢8), we
may look at a specific form of instability that manifests itself
by an exponential growth with time of the harmonic compo-
nents in the solutiort3). This can be done by adding small
disturbances to the amplitude and phase of the sol¢8pas

2 2
(a) {b)
1 1 .
o 0
> >
-1 -1
~ S
-2 -2
-3 -3
-4 -2 4] 2 -4 -2 0 2
X x

FIG. 7. Poincarenap of the blue-sky disappearance of the pe-
riodic attractor in systen?): (a) =0.998 andb) w=1, atf=0.05.
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FIG. 8. Trajectories to show transient chaos fer0.125 and FIG. 10. Signature of type-Il intermittency: Time series plot for
_ f=0.12 and(@) ©=0.5532 andb) »=0.5537.
w=0.535.
3 2. Hard-mode instability
X=- Z(a+ sa)’+(a+ da)cog wt+ p+ 5¢p) Now we examine another type of instability in which the
perturbation may have different harmonic components other
(a+ da)? than those inx(t). Following the spirit of the work of
+ TcosZwH— P+ 69) Szemplinska-Stupnicka and Rudows$kP] let us study, the
effect of a small disturbance to(t)= x(t), where x(t) is
(a+6a)? ) the solution(3), in the form
g K sin2(wt+ ¢+ 5¢). (6)
X(t)= X (t)+ x(1). (8)
Wprking out .the linearized equation fcﬁa_and 5¢, Oné  The linear variational equation faix(t) is then
ultimately arrives at the following expression, which corre-
sponds to the first-order instability limit: S%-+ Py (t) 8x+ P,(t) x=0, )
27 53 where
w*+ Z,uza“—Zaz—Z w?+|2a%+ 1—6a4+ 1) =0.
R0 B , a2 a3 a3
Pi(t)y=—u|1l-|agt 5+ 5+ -] +2a9a cosd
2 2 2
The above analysis is valid only for a fluctuation having the a?
same frequency as the approximate soluft) considered. + > cos2+---|, (10

R

FIG. 9. Signature of type-l intermittency: Time series plot for ~ FIG. 11. Signature of type-lll intermittency: Poincaime se-
f=0.17 and(a) w=0.526 01 andb) »=0.526 010 001. ries plot forf=0.14 andw=0.538 02.
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a2 a®
P,(t)=—|a|+38| a3+ - +2apa Cosf+ €020
3
2. 4 : 2
+2u|| —aga— 7@ sind+aga“w sin 20
a®
- sin30 |+ - - -, (11

with ap=—2a?, a,=a’4, ay=a’ul/3, 6=owt+ ¢, and the

ellipses correspond to higher-harmonic components. Intro- 7

ducing now the transformation

_1 t
oX=u exp{—j P.(t")dt’ |, (12
2 Jo
Eg. (9) can be converted into a Hill equation
u+P(t)u=0, (13
where
P(t)=P i 14
(O=Py= =~ (14

Using the form ofP; andP, given in Eqs(10) and(11), the
transformation(12) can be rewritten as

wt 2
SX=Uu ex;{ —At+ Ef
2Jo

a
2ay coY+ —cosZﬁ) da},

2
(19
1 [a® , aF &}
AIEM ?+ao+?+ ?—l . (16
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FIG. 12. Resonance curves and unstable regions of sol(8)on
I, branches unstable in the sense of first-order instability; I,
branches unstable in the sense of Neimark instability.

OX(t)y=exp(xie—A)tp(t). (20

It can be concluded that when is imaginary, the solution
(3) is stable ifA>0 ora>0.91 and unstable iA <0. This
form of instability (termed Neimark instabilityleads to a
buildup of new harmonic components whose frequencies are
incommensurate with the frequency of the periodic solution
3. o o

Case (iiy Considering the case;==* €4 so thate; is
real, then

X(t)=exp( = e1—A)tgp(t). (21)

When e, is real, the solution(3) is stable if A>0 and

Applying the Floquet theorem, one can look for a particulara2>"¢ 2 and this form of instability is approximately equal

solution of Eq.(13) in the form

u=exp(e;t) p(1), 17

whereg(t) is a periodic function of time ane is either real
or imaginary. Thus Eq(15) becomes

SX(t)=exple;— A)tp(t), (18)
where
_ o[t a2
P(t)= qb(t)ex;{gfo 2aga coY+ fcosm)de .
(19

The stability of solution(3) depends exclusively on the

exponent coefficientd; —A) in Eq. (18). Let us now discuss
the various possibilities to have a stable solution.

Case (i) Considering the case;=*ie; so thate, is
real and positive, then

to the classic first-order instability as given by E@).
Therefore, the form of instability defined by EQ0) and
so the conditiolA >0 leads to the build up of new harmonic

components with frequencies+ ¢, and w— €,. However,
these frequencies are in general incommensurate with the
frequencyw of the periodic solutior(3), whereas forA <0

the solution is unstable and f0=0 is the boundary of the
instability. Thus this instability can be interpreted as a Ne-
imark instability, giving rise to a Neimark bifurcation.

Let us now look at the resonance curves, shown in Fig.
12, and the two unstable regions defined by condifion
(first-order instability and the conditiom <0 for Neimark
instability. From Fig. 12 the Neimark instability is expected
to occur at the frequency value where the resonance curve
crosses the critical boundary valae-0.91. To determine
the Neimark stability limit in thef-w parameter plane, we
calculate the forcing parametdr by using the resonance
equation(4). Figure 13 depicts the Neimark instability limit
defined by the conditiod <0 and the first-order stability
limit described by the conditiori7). The numerical study
results presented already in Fig. 1 are shown for comparison.
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FIG. 13. Regions of different steady states:
numerical (solid line) and theoretical(dashed
\ wa line) stability limits.

AY

0.4

QUASIPERIODIC
ORBITS

0.10F L
0.45 0.50

0.65 0.70 075

The theoretically predicted Neimark instability values are Further, the Duffing oscillator exhibits the period-
reasonably close to the numerical results. doubling route to chaos of a large peridderbit in the
lower-frequency region, that isg<<0.4, while in the present
case, the system always exhibits almost-periodic oscillations
V. COMPARISON OF THE DYNAMICS WITH in the region. In the present case, for all transition boundaries
THE DOUBLE-WELL DUFFING OSCILLATOR such as QR), P(1), and QR2), there are some regions
where the coexistence of multiple attractors is found to oc-
cur. But in the Duffing oscillator case, the coexistence of
multiple attractors is observed in the transition region from a
large period¥ orbit to cross-well chaos. Blue-sky catastro-
phes, type-ll and -lll intermittencies, and various phase-
locked states are found to occur in the present case. How-
ever, in the Duffing oscillator case such phenomena have
not been found(at least to our knowledge Naturally,

with that of double-well DVP oscillato2) for the same thg dyr_1a_m|cs exhibited by the DVP equati¢d) is als_o
parametric valuega|= 8=0.5 andu=0.1. The results are quite distinct compared to the forced van der Pol oscillator

compared in Table I. In the lower-frequency boundary regior{zﬂ'

(see Fig. 1 of Ref[15]), the Duffing oscillator exhibits

symmetry-breaking bifurcations, while in the DVP oscillator, V. CONCLUSION

a Neimark bifurcation boundar§Fig. 1 of the present paper

has been found. In the higher-frequency boundary region, Numerical studies show that the double-well Duffing—van
particularly in the principal resonance region, the Duffingder Pol oscillator(2) with the parameter choickr|=8 ex-
system exhibits period-doubling bifurcations of small peri-hibits a rich variety of attractors of periodic, quasi-
odic orbits and cross-well chaos. However, in the DVP sysperiodic, and chaotic types. Four varieties of transitions from
tem, this region is always found to have highly regular or-quasiperiodic to periodic motions occuii) QP—periodic
bits. orbits (i) QP—chaos—periodiciiii) QP—chaos—periodic
windows—chaos—periodic, andiv) QP—phase-locked
states—chaos—periodic orbits. In addition to these, local

Finally, it is of importance to compare the dynamics of
the double-well Duffing oscillator as given by Szemplinska-
Stupnika and RudowsKil5],

X+ ux—|a|x+ Bx3=f coswt, (22)

TABLE I. Comparison of the orbits of Duffing and DVP oscil-

lators. stable and supercritical, unstable and subcritical Neimark bi-
furcations and mode-locking, intermittent catastrophe, and

Parameters f Duffing oscillator DVP oscillator blue-sky catastrophe bifurcations are also shown to exist.
Transient chaos, period-doubling phenomena, boundary cri-

small small orbit QP orbit ses, and intermittencies of all three classic types are shown to

0e(0.4,0.9 occur and these were demonstrated with suitable examples in

large large orbit and chaos large orbit and chaosthe f-w parameter space. In the literature, so far all three
intermittencies have been found to occur mostly in the

small small orbit QP orbit higher-dimensional or coupled systefi’sl—23. However,
we(0.6,1.0 in the present case, even in a single model of a low-
large small orbit and chaos large orbit dimensional system, we are able to demonstrate all three

kinds of Pomeau-Manneville intermittencies. The various
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