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Bifurcation and chaos in the double-well Duffing–van der Pol oscillator: Numerical
and analytical studies

A. Venkatesan and M. Lakshmanan
Department of Physics, Centre for Nonlinear Dynamics, Bharathidasan University, Tiruchirappalli 620 024, India

~Received 3 June 1997!

The behavior of a driven double-well Duffing–van der Pol oscillator for a specific parametric choice
(uau5b) is studied. The existence of different attractors in the system parametersf -v domain is examined and
a detailed account of various steady states for fixed damping is presented. The transition from quasiperiodic to
periodic motion through chaotic oscillations is reported. The intervening chaotic regime is further shown to
possess islands of phase-locked states and periodic windows~including period-doubling regions!, boundary
crisis, three classes of intermittencies, and transient chaos. We also observe the existence of local-global
bifurcation of intermittent catastrophe type and global bifurcation of blue-sky catastrophe type during the
transition from quasiperiodic to periodic solutions. Using a perturbative periodic solution, an investigation of
the various forms of instabilities allows one to predict Neimark instability in thef -v plane and eventually
results in the approximate predictive criteria for the chaotic region.@S1063-651X~97!05611-0#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The Duffing–van der Pol~DVP! oscillator

ẍ2m~12x2!ẋ1ax1bx35 f cosvt, m.0, ~1!

where the overdot represents a derivative with respec
time, is a ubiquitous nonlinear differential equation th
makes its presence in physical, engineering, and even
logical problems@1–7#. It is a generalization of the classi
van der Pol oscillator equation. It can be considered in
least three physically interesting situations, wherein the
tential V(x)5ax2/21bx4/2 is a ~i! single well
(a.0,b.0), ~ii ! double well (a,0,b.0), or ~iii ! double
hump (a.0,b,0). Each one of the above three cases
become a classic central model to describe inherently n
linear phenomena, exhibiting a rich and baffling variety
regular and chaotic motions.

Chaotic motion in system~1! with a single-well–type re-
storing force was investigated by Ueda and Akamatsu@8# as
a model of negative resistance oscillator and later on
studied by a number of other authors@9–12#, who noted
symmetry breaking of attractors and the onset of chaotic
namics. Bountiset al. @11# have investigated the nonintegr
bility of a family of DVP oscillators by studying analyticity
properties of the solution in the complex time plane a
proved that an infinitely sheeted structure exists in this s
tem. Rajasekar, Parthasarthy, and Lakshmanan@13# pointed
out that the DVP oscillator with a double-well potential e
hibits Smale horseshoe chaos when transverse intersec
of the homoclinic orbits occur. Further, Kao and Wang@14#
had analog simulated the DVP oscillator with a double-hu
potential and discussed the various mode-locking, mult
hysteresis, period-doubling route to chaos, intermittent h
ping, and crises phenomena.

Recently, Szemplinska-Stupnika and Rudowski@12# re-
ported that a single-well–type DVP oscillator exhibits ch
otic motion between two types of regular motion, name
periodic and quasiperiodic oscillations, in the prinicipal res
561063-651X/97/56~6!/6321~10!/$10.00
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nance region for a specific value of the parameterf (51.0)
and a range ofv values~0.8–1.0!. Also they have obtained a
perturbative solution for the periodic oscillation and carri
out a stability analysis of such a solution to predict Neima
bifurcation. However, no such analysis exists for the imp
tant case of the double-well–type DVP oscillator so far
the literature, which is atypical in the sense that even in
absence of forcing it shows the existence of multiple attr
tors @6,7#.

Considering the DVP oscillator with a double-well–typ
restoring force in the form

ẍ2m~12x2!ẋ2uaux1bx35 f cosvt, b.0, ~2!

we notice that the three equilibrium points of the system~2!
for f 50 correspond to2uaux1bx350, so that we have the
stable fixed pointsx1,2

(s)56Auau/b and the unstable fixed
point that is hyperbolic atx0

(u)50. Actually, x1,2 are elliptic
points for uau5b and become stable foci foruau.b, while
they are unstable foci foruau,b. As a result, the system~2!
exhibits a large-orbit motion, which always encircles all t
three equilibrium points for the caseuau5b. As far as
uau.b is concerned, the system exhibits both small-orb
that is, oscillation around any one of the stable fixed poin
and large-orbit motion, depending upon the values of
other control parameters and also initial conditions.

In this paper we undertake an investigation of the dyna
ics of the double-well DVP oscillator~2! and show that it is
a rich dynamical system, possessing a vast number of reg
and chaotic steady states. In particular, considering the
cial caseuau5b ~the caseuauÞb is even richer and the
results will be presented separately@16#!, we bring out the
existence of a transition from quasiperiodic to periodic m
tion in the f -v parameter spacevia chaotic motion. The dif-
ferent features we observe are that in the chaotic sea t
are many isles of periodic and phase-locked states, wh
exhibit period-doubling phenomena, intermittencies, cris
etc., along with regions of transient chaos, corresponding
local bifurcations. In addition, there are also transitions fro
6321 © 1997 The American Physical Society
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6322 56A. VENKATESAN AND M. LAKSHMANAN
quasiperiodicity to period-T orbits corresponding to globa
bifurcation of blue-sky and local-global bifurcation of inte
mittent catastrophes. We also present a perturbative appr
to the study of bifurcations that occur near the principal re
nance. The analysis allows us to derive the algebraic eq
tions for the instability boundaries.

The plan of the paper is as follows. In Sec. II we pres
the numerical results for different steady states, bifurcat
routes, and chaos for system~2!. In Sec. III we develop a
perturbative solution and obtain expressions for the stab
regions and compare them with numerical results. Then
compare the results with the dynamics of the double-w
Duffing oscillator in Sec. IV. Finally, Sec. V summarizes o
results.

II. NUMERICAL RESULTS

Equation~2! is numerically integrated using the fourth
order Runge-Kutta algorithm with adaptive step size w
parameter values fixed atuau50.5, b50.5, andm50.1 in
order to study the large-orbit behavior mentioned in the
troduction. The transitions are also characterized by trac
the time evolutions, phase portrait, Poincare´ map, Fourier
spectrum, and Lyapunov exponents. For identifying differ
steady states, the dynamical transitions are traced out by
different scanning procedures:~i! varyingv at a fixedf ~fre-
quency scanning! and ~ii ! varying f at a fixedv ~amplitude
scanning!. The resulting phase diagram in thef -v parameter
is shown in Fig. 1. The diagram covers the transition thre
olds in the region of principal and superharmonic resonan
0.4,v,1.0 and the forcing strength lying in the regio
0.0, f ,0.2. The various features in the phase diagram
summarized and the dynamical transitions of the attrac
are elucidated in the following.

A. Phenomena of steady states

One observes that Eq.~2! admits the free-running solutio
when the external force is absent (f 50.0). When it is presen
and for low-f values and low-v values, the frequency of th
system becomes incommensurate with the external
quency. Consequently, the system exhibits multifreque
quasiperiodic oscillations. When the value of the exter
frequencyv exceeds a certain critical value for fixedf , a
transition from quasiperiodic to periodic oscillations occu
on increasingv ~see Fig. 1! essentially due to supercritica
Neimark bifurcation~see Secs. II B and III!. This phenom-
enon continues until a criticalf value (f ;0.115).

On increasing the forcing parameterf further, f .0.115,
the system exhibits chaotic motion between the two reg
motions, that is quasiperiodic and periodic oscillatio
within a range of the driving frequencyv. For example, at
f 50.13, chaotic motion occurs in the regionv
P(0.546,0.553)@see Fig. 2~a!#.

As the forcing parameterf increases further, within a ver
narrow frequency region, a chaos—periodic windows
chaos type of transition is found to occur between the t
regular oscillations. For example, atf 50.14, a period-5T
solution occurs in the frequency rangevP(0.545,0.551)
within the chaotic rangevP(0.525,0.553)@see Fig. 2~b!#. At
f 50.17, a period-doubling phenomenon occurs in the w
ch
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dow region of the frequencyvP(0.503,0.529). In the above
range, we note that the period-2 orbit is born atv50.529; it
undergoes a period-(232m)-doubling bifurcation, finally
leading to the onset of chaos asv decreases@see Fig. 2~c!#.

Higher values of the forcing strengthf introduce the ap-
pearance of a new transition. When this increase is coup
with increasing frequency, the quasiperiodic motion su
denly changes into a phase-locked attractor. As an exam
at f 50.19, the transition from a quasiperiodic oscillation
phase locked states of period-3 orbit occurs atv50.453 and
this locked state persists in the frequency rangev
P(0.453,0.47), which is then followed by chaos, reverse
riod doubling, chaos, and periodic solution@see Fig. 2~d!#.

The details of our numerical study are summarized in
f -v phase diagrams, Fig. 1 and the bifurcation diagrams
Fig. 2. They depict the system parameter region where q
siperiodic, large periodic, and chaotic attractors exist. T
curves denoted QP~1!, QP~2!, and P~1! are the boundaries o
the transition from the quasiperiodic to the chaotic state,
quasiperiodic to the periodic state, and the chaotic to
periodic state, respectively. Also, one observes in the en
transition regions very often the coexistence of multiple
tractors. Further, beyond the curve P~1!, there are some re
gions that exhibit phase-locked periodic and transient cha
states. However, in this paper, those states are not discu
in detail.

Various steady states, denoted as 1,2,3, . . . ,15 inFig. 1,
are then illustrated in Fig. 3. Regular attractors are illustra
by their phase portraits and quasiperiodic and chaotic att
tors by their Poincare´ maps.

The first three points~1!–~3! in Fig. 3 are examples o
almost periodic~quasiperiodic! orbits for low values off .
Then points~4!–~15! are essentially located at the princip
and superharmonic resonance regions for large values o
forcing parameterf .0.12, at increasing driving frequenc
v. We observe here the following: a quasiperiodic or
@point ~4!#, a period-3T orbit @point ~5!#, chaotic orbits
@points ~6! and ~7!#, period-doubled orbits@points ~8! and
~9!#, chaotic orbits@points ~10! and ~11!#, a period-5T orbit
@point ~12!#, and period-T orbits @points ~13!–~15!#.

B. Classification of bifurcations

The complicated dynamical behaviors of the DVP osc
lator ~2! with uau5b due to the presence of the double-we
restoring force has been confirmed by the phase diagram
discussed above. From the bifurcation theory point of vie
these correspond to several types of bifurcations: secon
Hopf, intermittent, and blue-sky catastrophes, in addition
standard period-doubling bifurcations, which are discus
in the following section.

1. Local bifurcations in the QP(1) region: Secondary Hopf
(Neimark) bifurcation

In analogy with the Hopf bifurcation, a bifurcation is ex
pected at a critical value as the limit cycle loses its stabil
so that an attracting torus is born. This is the secondary H
bifurcation or a Neimark bifurcation@17#. Further, the bifur-
cated solution can be either stable and supercritical or
stable and subcritical. For the present DVP oscillator~2!
with uau5b, there is a very large transition region QP~1!
corresponding to this secondary Hopf bifurcation. As an
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FIG. 1. Regions of different steady states exhibited by the double-well DVP oscillator~2! at m50.1.
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ample, let us examine the transient process nearf 50.1. Fig-
ure 4 shows the Poincare´ maps with values ofv decreasing
and with the starting values ofx and ẋ indicated in paren-
theses. In Fig. 4~a!, for v50.59, we see a nodelike conve
gence to a point, while in Fig. 4~b!, for v50.58, the conver-
gence has a spiraling character and the rate of convergen
noticeably slower. In Fig. 4~c!, at v50.57, we see that the
system is moving outward from near an unstable fixed po
towards the attracting invariant closed curve and the
proach is termed supercritical. This is the typical behav
for the curve QP~1! in Fig. 1 for f ,0.10.

The other nature of Neimark bifurcation, namely subcr
cal behavior, has also been observed in system~2!. For ex-
e is

t
-
r

-

ample, atf 50.15, the chaotic region exists in the rangev
P(0.512,0.551)~see Fig. 5!. It follows that this narrow strip
of chaotic motion is related to the transition from a qua
periodic to a periodic oscillation via chaotic motion. Th
transition does not occur in a smooth, continuous way, a
the case when the Neimark bifurcation is a supercritical o
but occurs through a chaotic region. This type of transit
has a close resemblance to the Duffing oscillator@15,17,18#
case, where it was shown that a lower-frequency band of
chaotic region is related to the saddle-node bifurcati
which causes a sudden change from~to! theT-periodic orbit
to ~from! the chaotic attractor and transient motions sepa
the two different steady states. Thus, by analogy, the oc
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FIG. 2. ~i! Bifurcation diagram for maximum amplitudex vs external forcing frequencyv and ~ii ! Maximal Lypanov exponetlmax vs
external forcing frequencyv of system~2!. ~a! QP—chaos—periodic orbit transitions forvP~0.4,0.65! at f 50.13.~b! QP—chaos—periodic
windows—chaos transitions forvP~0.4,0.65! at f 50.14.~c! QP—chaos—period-doubling window—chaos transitions forvP~0.4,0.65! at
f 50.17. ~d! QP—phase-locked states—chaos—period-doubling windows—chaos transitions forvP~0.4,0.65! at f 50.19.
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rence of chaotic motion in the region of driving frequen
that separates quasiperiodic and periodic oscillations ca
interpreted as a subcritical Neimark bifurcation. This type
bifurcation has been reported earlier in Ref.@12# for the
single-well DVP oscillator, but the unstable motion corr
sponds to randomly transitional motion, whereas in
present double-well case this corresponds to a fully cha
attractor and periodic windows.

2. Local-global bifurcation in the QP(2) region:
Intermittent catastrophe

Figure 6 shows the typical Poincare´ maps with forcing
values f 50.001 72 and 0.001 73 atv50.83 in the QP~2!
region, where a transition from quasiperiodic to periodic m
tion occurs. In order to lock the quasiperiodic motion to t
period-T motion, the Poincare´ map points form a closed loo
with points progressing more rapidly near the top of the
tractor and more slowly where points are visibly dense.
the external force strength is increased, a saddle-node
develops such that quasiperiodic motion rapidly shrinks
the node, which is near the original attractor. This type
process is prototypical of an intermittent catastrophe@17,19#.
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3. Global bifurcations in the QP(2) region: Blue-sky catastrophe

As the frequency value is increased tov50.998, a differ-
ent transition process is captured forf 50.05. The typical
Poincare´ map is shown in Fig. 7 with the values ofv at
0.998 and 1 andf 50.05. From Fig. 7, we find that a periodi
attractor bifurcates to a quasiperiodic attractor that is loca
inside the other, and the two attractors are typically disjo
and separated in phase space by a finite distance. Fur
more, it is not generic for a quasiperiodic attractor to app
suddenly at the same control threshold where periodic m
tion vanishes. The quasiperiodic attractor will have exis
previously or it will not exist at all; in either case the bifu
cation will consist of the periodic attractor simply losin
stability: It vanishes into the blue. Such a phenomenon
termed blue-sky catastrophe@17,20# in the literature and this
event involves collisions with saddle-type objects.

4. Transitions to chaotic attractors in theV-shaped region

We now enumerate the various possible attractors pre
in the system in theV-shaped region in Fig. 1.

(i) Transient chaos and boundary crises.Chaotic behavior
is observed between the boundary of curves QP~1! and P~1!
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56 6325BIFURCATION AND CHAOS IN THE DOUBLE-WELL . . .
in Fig. 1. Near the boundaries of the curves P~1! and QP~1!,
the system behaves in a random way, with the traject
moving in phase space as if it were on a strange attrac
However, after a transient time, the motion settles into
regular attractor, that is, near P~1! it settles into a periodic

FIG. 3. Various types of steady states atm50.1: ~1! f 50.001,v
50.78; ~2! f 50.001, v50.9; ~3! f 50.12, v50.45; ~4! f 50.15,
v50.45; ~5! f 50.19, v50.47; ~6! v50.515; ~7! v50.52; ~8!
v50.525; ~9! v50.53; ~10! f 50.15, v50.54; ~11! f 50.14,
v50.53; ~12! f 50.135, v50.54; ~13! f 50.14, v50.58; ~14!
f 50.15,v50.58; ~15! f 50.18,v50.58.

FIG. 4. Trajectories near the Neimark bifurcation for system~2!
at f 50.1: ~a! v50.59 ~1,1!; ~b! v50.59 ~1,1!; and ~c! v50.57
~1,1!.
ry
r.

a

motion ~for example, see Fig. 8!, while near QP~1! it settles
into a quasiperiodic oscillation. Such a phenomenon
termed transient chaos, which is a precursor to steady-s
chaos. Between these two transitional regions, periodic w
dows, phase-locked states, chaotic attractors, and pe
doubling phenomena occur. In addition, the boundary cr
@21# of the chaotic attractor appears as the value of the
ternal frequency increases so that the dynamics corresp
to the curve P~1!, where the boundary of the chaotic attract
touches the unstable periodic orbit.

In addition, one observes the interesting fact that in
V-shaped region there exists different parametric values
which intermittency of all three classic types occurs. Th
seems to be rare in such low-dimensional systems.

(ii) Type-I intermittency.The parameter regions separa
ing the periodic windows inside theV-shaped region corre
spond to various complicated dynamics including chaos. T
precise stability boundary of each window has been found
correspond to a saddle-node instability. As an example,
f 50.17, if v is increased across the saddle-node bound
type-I intermittency occurs@22–25#. One such intermittency
signature is shown in Fig. 9. The average laminar len
(^ l &) of this type of intermittency is found to comply with
the law ^ l &;m2d, with d;0.5260.001, wherem5v2vc

andvc is the bifurcation threshold.
(iii) Type-II intermittency.We showed that two possibili

ties exist in the QP~1! region when the periodic motion en
counters a Hopf bifurcation. Either quasiperiodic motion
sults if the bifurcation is supercritical or a complicate
evolution appears if the bifurcation is subcritical. In the lat
case the transition to chaos is found to have an intermitte
signature in certain parametric regions. Such an interm
tency signature is shown in Fig. 10. A close look into t
signature reveals that there are distinct phases of the reg
motion that are punctuated by other phases that are ap
ently chaotic. According to the classical Pomeau-Mannev
categorization of different types of intermittencies based
local bifurcations, the present intermittency is of type
since the preceding bifurcation is a Hopf bifurcatio
@22–25#. The average lengtĥl & of the laminar phase of this
intermittency is found to comply with the laŵl &;(1/m)d,
with d50.9321, wherem5v2vc andvc is the bifurcation
threshold.

(iv) Type-III intermittency.Next we discuss yet anothe
type of route in which the periodic orbits in the period
windows are seen to undergo an intermittent transition
chaos. One such intermittent motion is shown in Fig. 1
which is a Poincare´ time series plot for f 50.14 and
v50.538 02. It is seen that the motion just before the on
of intermittency is of period-20 orbit, which itself occurre
due to the period doubling of the period-10 orbit. The lam
nar phase of Fig. 11 corresponds to the period-40 orbit al
with chaotic bursts. Therefore, this is identified to ha
arisen out of a subcritical half subharmonic instability, th
is, subcritical period doubling. Thus, according to t
Pomeau-Manneville classification, this is type-III interm
tency @22#. The average lengtĥl & of the laminar phase o
this intermittency complies with the following scaling la
predicted by Pomeau and Manneville:^ l &;(1/m)d, with
d50.9912, wherem5v2vc and vc is the bifurcation
threshold.
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FIG. 5. ~i! Bifurcation diagram for maximum
amplitudex vs external forcing frequencyv and
~ii ! Maximal Lypanov exponetlmax vs external
forcing frequencyv of system~2!. QP—chaos—
periodic orbit transitions forvP~0.4,0.65! at
f 50.15.
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III. PERTURBATIVE ANALYSIS

From the numerical studies reported in the previous s
tions, we observed that the periodic-T orbit within a range of
driving frequencyv for low values of f is close to a har-
monic function of time. Then, by obtaining a first-order a
proximate period-T (52p/v) solution and analyzing the
stability, one can estimate the system parameter domai
which Neimark instability arises, as was done in the case
a single-well DVP oscillator for fixedf andv in Ref. @12#.
Keeping this aim in mind, we look for a periodic solution
Eq. ~2! using a perturbative method~with both uau and b
fixed at 0.5!. Applying the method of multiple scales@1,26#
to Eq.~2!, one can obtain the approximate solution about
stable fixed pointxs5Aa/b in the form

FIG. 6. Poincare´ map of the system~2! before and after mode
locking for ~a! f 50.001 72,~b! f 50.001 73, and~c! f 50.001 74 at
v50.83.
c-

in
of

e

x52
3

4
a21a cos~vt1f!1

a2

4
cos2~vt1f!

2
a2

3
m sin 2~vt1f!, ~3!

where

a5
f

A@V2~a!2v2#21~ 3
2 mva2!2

, ~4!

tanf52

3
2 mva2

V2~a!2v2 , ~5!

and V2(a)512 9
8a

2 is the natural frequency of the autono
mous conservative system~2! at m50 and f 50.

A. Linear stability analysis

1. Soft-mode instability

In order to examine the stability of the solution~3!, we
may look at a specific form of instability that manifests itse
by an exponential growth with time of the harmonic comp
nents in the solution~3!. This can be done by adding sma
disturbances to the amplitude and phase of the solution~3! as

FIG. 7. Poincare´ map of the blue-sky disappearance of the p
riodic attractor in system~2!: ~a! v50.998 and~b! v51, at f 50.05.
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x52
3

4
~a1da!21~a1da!cos~vt1f1df!

1
~a1da!2

4
cos2~vt1f1df!

2
~a1da!2

3
m sin2~vt1f1df!. ~6!

Working out the linearized equation forda and df, one
ultimately arrives at the following expression, which corr
sponds to the first-order instability limit:

v41S 27

4
m2a422a222Dv21S 2a21

53

16
a411D50.

~7!

The above analysis is valid only for a fluctuation having t
same frequency as the approximate solutionx(t) considered.

FIG. 8. Trajectories to show transient chaos forf 50.125 and
v50.535.

FIG. 9. Signature of type-I intermittency: Time series plot f
f 50.17 and~a! v50.526 01 and~b! v50.526 010 001.
-

2. Hard-mode instability

Now we examine another type of instability in which th
perturbation may have different harmonic components ot
than those inx(t). Following the spirit of the work of
Szemplinska-Stupnicka and Rudowski@12# let us study, the
effect of a small disturbance tox(t)5 x̄ (t), where x̄ (t) is
the solution~3!, in the form

x~ t !5 x̄ ~ t !1dx~ t !. ~8!

The linear variational equation fordx(t) is then

d ẍ1P1~ t !d ẋ1P2~ t !dx50, ~9!

where

P1~ t !52mF12S a0
21

a2

2
1

a2
2

2
1

a3
2

2 D 12a0a cosu

1S a2

2 D cos2u1•••G , ~10!

FIG. 10. Signature of type-II intermittency: Time series plot f
f 50.12 and~a! v50.5532 and~b! v50.5537.

FIG. 11. Signature of type-III intermittency: Poincare´ time se-
ries plot for f 50.14 andv50.538 02.
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P2~ t !52uau13bS a0
21

a2

2
12a0a cosu1

a2

2
cos2u D

12mF S 2a0
2a2

a3

4 Dv sinu1a0a2v sin 2u

2
a3

2
v sin3u G1•••, ~11!

with a052 3
4 a2, a25a2/4, a35a3m/3, u5vt1f, and the

ellipses correspond to higher-harmonic components. In
ducing now the transformation

dx5u expF21

2 E
0

t

P1~ t8!dt8G , ~12!

Eq. ~9! can be converted into a Hill equation

ü1P~ t !u50, ~13!

where

P~ t !5P22
P1

2

4
2

Ṗ1

2
. ~14!

Using the form ofP1 andP2 given in Eqs.~10! and~11!, the
transformation~12! can be rewritten as

dx5u expF2Dt1
m

2E0

vtS 2a0 cosu1
a2

2
cos2u DduG ,

~15!

D5
1

2
mFa2

2
1a0

21
a2

2

2
1

a3
2

2
21G . ~16!

Applying the Floquet theorem, one can look for a particu
solution of Eq.~13! in the form

u5exp~e1t !f~ t !, ~17!

wheref(t) is a periodic function of time ande1 is either real
or imaginary. Thus Eq.~15! becomes

dx~ t !5exp~e12D!tf̄~ t !, ~18!

where

f̄~ t !5f~ t !expFm

2E0

vtS 2a0a cosu1
a2

2
cos2u DduG .

~19!

The stability of solution~3! depends exclusively on th
exponent coefficient (e12D) in Eq. ~18!. Let us now discuss
the various possibilities to have a stable solution.

Case (i). Considering the casee156 i ē 1 so that ē 1 is
real and positive, then
o-

r

dx~ t !5exp~6 i ē 12D!tf̄~ t !. ~20!

It can be concluded that whene1 is imaginary, the solution
~3! is stable ifD.0 or a.0.91 and unstable ifD,0. This
form of instability ~termed Neimark instability! leads to a
buildup of new harmonic components whose frequencies
incommensurate with the frequency of the periodic solut
~3!.

Case (ii). Considering the casee156 ē 1 so that ē 1 is
real, then

dx~ t !5exp~6 ē 12D!tf̄~ t !. ~21!

When ē 1 is real, the solution~3! is stable if D.0 and
D2. ē 1

2 and this form of instability is approximately equa
to the classic first-order instability as given by Eq.~7!.

Therefore, the form of instability defined by Eq.~20! and
so the conditionD.0 leads to the build up of new harmon
components with frequenciesv1 ē 1 andv2 ē 1. However,
these frequencies are in general incommensurate with
frequencyv of the periodic solution~3!, whereas forD,0
the solution is unstable and soD50 is the boundary of the
instability. Thus this instability can be interpreted as a N
imark instability, giving rise to a Neimark bifurcation.

Let us now look at the resonance curves, shown in F
12, and the two unstable regions defined by condition~7!
~first-order instability! and the conditionD,0 for Neimark
instability. From Fig. 12 the Neimark instability is expecte
to occur at the frequency value where the resonance c
crosses the critical boundary valuea;0.91. To determine
the Neimark stability limit in thef -v parameter plane, we
calculate the forcing parameterf by using the resonanc
equation~4!. Figure 13 depicts the Neimark instability lim
defined by the conditionD,0 and the first-order stability
limit described by the condition~7!. The numerical study
results presented already in Fig. 1 are shown for compari

FIG. 12. Resonance curves and unstable regions of solution~3!:
I, branches unstable in the sense of first-order instability;
branches unstable in the sense of Neimark instability.
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FIG. 13. Regions of different steady state
numerical ~solid line! and theoretical~dashed
line! stability limits.
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The theoretically predicted Neimark instability values a
reasonably close to the numerical results.

IV. COMPARISON OF THE DYNAMICS WITH
THE DOUBLE-WELL DUFFING OSCILLATOR

Finally, it is of importance to compare the dynamics
the double-well Duffing oscillator as given by Szemplinsk
Stupnika and Rudowski@15#,

ẍ1m ẋ2uaux1bx35 f cosvt, ~22!

with that of double-well DVP oscillator~2! for the same
parametric valuesuau5b50.5 andm50.1. The results are
compared in Table I. In the lower-frequency boundary reg
~see Fig. 1 of Ref.@15#!, the Duffing oscillator exhibits
symmetry-breaking bifurcations, while in the DVP oscillato
a Neimark bifurcation boundary~Fig. 1 of the present paper!
has been found. In the higher-frequency boundary reg
particularly in the principal resonance region, the Duffi
system exhibits period-doubling bifurcations of small pe
odic orbits and cross-well chaos. However, in the DVP s
tem, this region is always found to have highly regular
bits.

TABLE I. Comparison of the orbits of Duffing and DVP osci
lators.

Parameters f Duffing oscillator DVP oscillator

small small orbit QP orbit
vP~0.4,0.6!

large large orbit and chaos large orbit and cha

small small orbit QP orbit
vP~0.6,1.0!

large small orbit and chaos large orbit
f
-

n

n,

-
-
-

Further, the Duffing oscillator exhibits the period
doubling route to chaos of a large period-T orbit in the
lower-frequency region, that is,v,0.4, while in the presen
case, the system always exhibits almost-periodic oscillati
in the region. In the present case, for all transition bounda
such as QP~1!, P~1!, and QP~2!, there are some region
where the coexistence of multiple attractors is found to
cur. But in the Duffing oscillator case, the coexistence
multiple attractors is observed in the transition region from
large period-T orbit to cross-well chaos. Blue-sky catastr
phes, type-II and -III intermittencies, and various pha
locked states are found to occur in the present case. H
ever, in the Duffing oscillator case such phenomena h
not been found~at least to our knowledge!. Naturally,
the dynamics exhibited by the DVP equation~2! is also
quite distinct compared to the forced van der Pol oscilla
@27#.

V. CONCLUSION

Numerical studies show that the double-well Duffing–v
der Pol oscillator~2! with the parameter choiceuau5b ex-
hibits a rich variety of attractors of periodic, quas
periodic, and chaotic types. Four varieties of transitions fr
quasiperiodic to periodic motions occur:~i! QP—periodic
orbits ~ii ! QP—chaos—periodic,~iii ! QP—chaos—periodic
windows—chaos—periodic, and~iv! QP—phase-locked
states—chaos—periodic orbits. In addition to these, lo
stable and supercritical, unstable and subcritical Neimark
furcations and mode-locking, intermittent catastrophe, a
blue-sky catastrophe bifurcations are also shown to ex
Transient chaos, period-doubling phenomena, boundary
ses, and intermittencies of all three classic types are show
occur and these were demonstrated with suitable example
the f -v parameter space. In the literature, so far all th
intermittencies have been found to occur mostly in t
higher-dimensional or coupled systems@21–23#. However,
in the present case, even in a single model of a lo
dimensional system, we are able to demonstrate all th
kinds of Pomeau-Manneville intermittencies. The vario

s
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forms of instability of the approximate periodic solution a
lows one to predict the Neimark bifurcation in thef -v pa-
rameter domain. Although some discrepancy between
and theoretical predictions occurs, the approximate anal
allows one to distinguish between the regular and cha
regions.
n
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